Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots
نویسندگان
چکیده
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat.
منابع مشابه
Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall
Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. ...
متن کاملAluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production.
The extent of aluminium internalization during the recovery from aluminium stress in living roots of Arabidopsis thaliana was studied by non-invasive in vivo microscopy in real time. Aluminium exposure caused rapid depolarization of the plasma membrane. The extent of depolarization depends on the developmental state of the root cells; it was much more extensive in cells of the distal than in th...
متن کاملSustainability of Aluminium Oxide Nanoparticles Blended Mahua Biodiesel to the Direct Injection Diesel Engine Performance and Emission Analysis
The study investigates the effect of aluminium oxide nanoparticles as an additive to Madhuca Indica (mahua) methyl ester blends on performance, emission analysis of a single-cylinder direct injection diesel engine operated at a constant speed at different operating conditions. The test fuels are indicated as B10A0.2, B10A0.4, B20A0.2, B20A0.4 and diesel respectively. The results indica...
متن کاملSustainability of Aluminium Oxide Nanoparticles Blended Mahua Biodiesel to the Direct Injection Diesel Engine Performance and Emission Analysis
The study investigates the effect of aluminium oxide nanoparticles as an additive to Madhuca Indica (mahua) methyl ester blends on performance, emission analysis of a single-cylinder direct injection diesel engine operated at a constant speed at different operating conditions. The test fuels are indicated as B10A0.2, B10A0.4, B20A0.2, B20A0.4 and diesel respectively. The results indica...
متن کاملHOW ALUMINIUM IS TAKEN U P BY RED BLOOD CELLS: A STUD Y IN RELATION TO H YP OCHROMIC MICROC YTIC ANEMIA IN HEMODIALYZED PATIENTS
Investigation of aluminium uptake by human erythrocytes was the major aim of this study. Packed red blood cells were incubated in Earle's medium (pH 7.4) containing varying concentrations of aluminium (0-160 /lg/J) as AIK(SO.), and aluminium content of the cells were determined using flameless atomic absorption. There was significant increase in aluminium content of the cells. Addition of 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 67 شماره
صفحات -
تاریخ انتشار 2016